
8 Linear systems in Rd

8.1 General theory

In the previous lecture I discussed a few things about planar linear autonomous ODE. However, most
of this discussion can be extended to d-dimensional space Rd without much of a change. Especially
simple are the formulations in the generic case, and I will stick to it to give an idea what can be
expected in such systems.

I consider
ẋ = Ax, x(t) ∈ Rd, d ≥ 1, (1)

with the initial condition
x(0) = x0 ∈ Rd. (2)

The unique solution to (1)–(2) is given by the same formula

x(t;x0) = eAtx0,

where the matrix exponent is defined in the previous lecture.
I assume that matrix A is hyperbolic. To wit, let d be the number of eigenvalues of A counting

multiplicities, and let d−, d+, and d0 denote the number of eigenvalues with negative, positive and
zero real parts respectively. I have d0 + d− + d+ = d.

Definition 1. System (1), as well as matrix A, as well as the equilibrium x̂ = 0 ∈ Rd, are called
hyperbolic if d0 = 0. Moreover, x̂ is called a hyperbolic saddle if d+d− ̸= 0.

To be hyperbolic is a generic property: almost all the matrices are hyperbolic. Moreover, a
hyperbolic system (1) can have only one equilibrium x̂ because in this case I have that detA ̸= 0
(recall that I have detA =

∏d
i=1 λi).

Another generic property is to have distinct eigenvalues (i.e., there are no multiple eigenvalues).
In this case I know from the linear algebra that the list of eigenvectors (v1, . . . ,vd) corresponding to
the eigenvalues is linearly independent and hence forms a basis of Rd (if matrix A is real then I always
have the basis of real vectors in the sense that for the complex conjugate pair of eigenvalues λi and
λj+1 = λj I take Revj and Imvj as the real basis vectors). Let me denote T−, T+, T0 the subspaces
formed by the spans of the vectors corresponding to the eigenvalues with negative real part, positive
real part, and zero real part respectively. They are called stable, unstable, and neutral subspaces
respectively. If all the eigenvalues are distinct then

Rd = T− ⊕ T+ ⊕ T0,

i.e., any element of v ∈ Rd can be uniquely represented

v = v− + v+ + v0,

where v− ∈ T−, v+ ∈ T+, v0 ∈ T0.
An important property of T±, T0 is their invariance with respect to the flow defined by (1). This

means that if the initial condition, e.g., x0 ∈ T− then x(t;x0) ∈ T− for any t → ±∞.
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Proposition 2. Subspaces T±, T0 are invariant with respect to the flow of (1).

Proof. Consider, e.g., x0 ∈ T−. It means that

x0 = C1v1 + . . .+ Cd−vd− ,

such that for each vi there is λi such that Reλi < 0. Consider vector-function

ϕ(t) = C1e
λ1tv1 + . . .+ Cd−e

λd− tvd− .

I have ϕ(0) = x0 and this function satisfies (1) (check it). Therefore x(t;x0) = ϕ(t) is the unique
solution, and by construction ϕ(t) ∈ T− for any t. �

The general theory discussed so far implies

Theorem 3. Let Rd = T− ⊕ T+ ⊕ T0 and detA ̸= 0. Then the unique equilibrium x̂ is Lyapunov
stable if and only if T+ = ∅. û is asymptotically stable if and only if T0 = T+ = ∅.

The condition Rd = T− ⊕ T+ ⊕ T0 means that I have exactly d linearly independent eigenvectors
of A. This is not always true in the case when there are eigenvalues of multiplicities larger than one.
But even in this case I have

Theorem 4. Consider (1). If for all eigenvalues of A I have Reλi < 0 then the unique equilibrium
x̂ is asymptotically stable.

8.1.1 Examples of the phase portraits in R3

Consider several examples of three dimensional hyperbolic equilibria and their phase portraits.
The first example is for

A1 =

−1 0 0
0 −2 0
0 0 1

 .

Here I have the eigenvalues −1,−2, 1 and the corresponding eigenvectors coincide with the coordinate
axes. According to the general theory I have a stable subspace T− spanned by two standard coordinate
vectors e1 = (1, 0, 0) and e2 = (0, 1, 0), whereas the subspace spanned by e3 = (0, 0, 1) is unstable
(see the figure).

The second example is for

A2 =

1/2 2 0
8 1/2 0
0 0 −1

 ,

and hence the eigenvalues are 1/2 ± 4i and −1. The two eigenvectors corresponding to the complex
conjugate eigenvalues can be used to form a two dimensional real subspace T+, which is unstable. The
vector e3 spans the stable subspace T−.

For the third example I picked

A3 =

−1/2 2 0
8 −1/2 0
0 0 −1

 ,
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Figure 1: Three dimensional phase portraits. A hyperbolic saddle with two dimensional stable sub-
space T− and one dimensional unstable subspace T+ for matrix A1 (see the text for details). A
hyperbolic saddle with one dimensional stable subspace T− and two dimensional unstable subspace
T+ for A2. A hyperbolic sink with three dimensional stable subspace T− = R3 for A3. A hyperbolic
source with three dimensional unstable subspace T+ = R3 for A4

and hence all three eigenvalues have negative real parts. Therefore in this case my state space R3

coincides with the stable subspace T−.
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Finally, take

A4 =

1 0 0
0 3 0
0 0 2

 ,

with the real negative eigenvalues. The phase space here coincides with the unstable subspace T+.

8.1.2 Routh–Hurwitz criteria

The asymptotic stability of the equilibrium point of the linear system is determined by the condition
Reλi < 0, where λi are the roots of

P (λ) = λd + a1λ
d−1 + . . .+ ad−1λ+ ad.

Therefore it is of great use to have a condition which, without explicit calculations of the roots, would
provide us with information on the signs on the real parts of the roots. One of such conditions, and
arguably most used, is the Routh–Hurwitz criterion. I just formulate it here, proofs can be found
elsewhere1.

Consider a sequence of matrices

H1 = a1, H2 =

[
a1 1
a3 a2

]
, H3 =

a1 1 0
a3 a2 a1
a5 a4 a3

 , . . .

Hd =


a1 1 0 . . . 0
a3 a2 a1 . . . 0
a5 a4 a3 . . . 0
...
0 0 0 . . . ad

 ,

where Hj are the main corner minors of the last matrix Hd. Hd is written as follows. First I put on
the main diagonal the coefficients from a1 to ad. After this I fill the columns such that the column
with odd index can have only odd coefficients, and the columns with even indexes have only even
coefficients. I put 1 for a0 and zero for any coefficients ak for k < 0 and k > d.

Theorem 5 (Routh–Hurwitz). For all the roots of the characteristic polynomial P (λ) to have negative
real parts it is necessary and enough that

detH i > 0, i = 1, . . . , d.

Corollary 6. For d = 2, 3, 4 the necessary and sufficient conditions for the characteristic polynomial
to have all the roots with negative real part can be written as follows:

d = 2: a1 > 0, a2 > 0.

d = 3: a1 > 0, a3 > 0, a1a2 > a3.

d = 4: a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a23 + a21a4.

Corollary 7. The following necessary condition is true: If all the roots of the characteristic polynomial
have negative real parts then

aj > 0, j = 1, . . . , d.

1e.g., Gantmacher, F. R., & Brenner, J. L. (2005). Applications of the Theory of Matrices. Courier Corporation.
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